Summarizing Characteristics and Traits
Summary
When true-breeding or homozygous individuals that differ for a certain trait are crossed, all of the offspring will be heterozygotes for that trait. If the traits are inherited as dominant and recessive, the F1 offspring will all exhibit the same phenotype as the parent homozygous for the dominant trait.
If these heterozygous offspring are self-crossed, the resulting F2 offspring will be equally likely to inherit gametes carrying the dominant or recessive trait, giving rise to offspring of which one quarter are homozygous dominant, half are heterozygous, and one quarter are homozygous recessive. Because homozygous dominant and heterozygous individuals are phenotypically identical, the observed traits in the F2 offspring will exhibit a ratio of three dominant to one recessive.
Alleles do not always behave in dominant and recessive patterns. Incomplete dominance describes situations in which the heterozygote exhibits a phenotype that is intermediate between the homozygous phenotypes. Codominance describes the simultaneous expression of both of the alleles in the heterozygote.
Although diploid organisms can only have two alleles for any given gene, it is common for more than two alleles of a gene to exist in a population. In humans, as in many animals and some plants, females have two X chromosomes and males have one X and one Y chromosome.
Genes that are present on the X but not the Y chromosome are said to be X-linked, such that males only inherit one allele for the gene, and females inherit two. Finally, some alleles can be lethal. Recessive lethal alleles are only lethal in homozygotes, but dominant lethal alleles are fatal in heterozygotes as well.
Glossary
allele
gene variations that arise by mutation and exist at the same relative locations on homologous chromosomes
autosomes
any of the non-sex chromosomes
codominance
in a heterozygote, complete and simultaneous expression of both alleles for the same characteristic
dominant lethal
inheritance pattern in which an allele is lethal both in the homozygote and the heterozygote; this allele can only be transmitted if the lethality phenotype occurs after reproductive age
genotype
underlying genetic makeup, consisting of both physically visible and non-expressed alleles, of an organism
hemizygous
presence of only one allele for a characteristic, as in X-linkage; hemizygosity makes descriptions of dominance and recessiveness irrelevant
heterozygous
having two different alleles for a given gene on the homologous chromosome
homozygous
having two identical alleles for a given gene on the homologous chromosome
incomplete dominance
in a heterozygote, expression of two contrasting alleles such that the individual displays an intermediate phenotype
monohybrid
result of a cross between two true-breeding parents that express different traits for only one characteristic
phenotype
observable traits expressed by an organism
Punnett square
visual representation of a cross between two individuals in which the gametes of each individual are denoted along the top and side of a grid, respectively, and the possible zygotic genotypes are recombined at each box in the grid
recessive lethal
inheritance pattern in which an allele is only lethal in the homozygous form; the heterozygote may be normal or have some altered, non-lethal phenotype
sex-linked
any gene on a sex chromosome
test cross
cross between a dominant expressing individual with an unknown genotype and a homozygous recessive individual; the offspring phenotypes indicate whether the unknown parent is heterozygous or homozygous for the dominant trait
X-linked
gene present on the X, but not the Y chromosome
This lesson is part of:
Mendel's Experiments and Heredity