Summarizing Nutritional Adaptations of Plants
Summary
Atmospheric nitrogen is the largest pool of available nitrogen in terrestrial ecosystems. However, plants cannot use this nitrogen because they do not have the necessary enzymes. Biological nitrogen fixation (BNF) is the conversion of atmospheric nitrogen to ammonia. The most important source of BNF is the symbiotic interaction between soil bacteria and legumes. The bacteria form nodules on the legume’s roots in which nitrogen fixation takes place. Fungi form symbiotic associations (mycorrhizae) with plants, becoming integrated into the physical structure of the root.
Through mycorrhization, the plant obtains minerals from the soil and the fungus obtains photosynthate from the plant root. Ectomycorrhizae form an extensive dense sheath around the root, while endomycorrhizae are embedded within the root tissue. Some plants—parasites, saprophytes, symbionts, epiphytes, and insectivores—have evolved adaptations to obtain their organic or mineral nutrition from various sources.
Glossary
epiphyte
plant that grows on other plants but is not dependent upon other plants for nutrition
insectivorous plant
plant that has specialized leaves to attract and digest insects
nitrogenase
enzyme that is responsible for the reduction of atmospheric nitrogen to ammonia
nodules
specialized structures that contain Rhizobia bacteria where nitrogen fixation takes place
parasitic plant
plant that is dependent on its host for survival
rhizobia
soil bacteria that symbiotically interact with legume roots to form nodules and fix nitrogen
saprophyte
plant that does not have chlorophyll and gets its food from dead matter
symbiont
plant in a symbiotic relationship with bacteria or fungi
This lesson is part of:
Soil and Plant Nutrition