Collision Theory

Collision Theory

We should not be surprised that atoms, molecules, or ions must collide before they can react with each other. Atoms must be close together to form chemical bonds. This simple premise is the basis for a very powerful theory that explains many observations regarding chemical kinetics, including factors affecting reaction rates.

Collision theory is based on the following postulates:

  1. The rate of a reaction is proportional to the rate of reactant collisions:

    \(\text{reaction rate} \propto \cfrac{\# \text{collisions}}{\text{time}}\)

  2. The reacting species must collide in an orientation that allows contact between the atoms that will become bonded together in the product.

  3. The collision must occur with adequate energy to permit mutual penetration of the reacting species’ valence shells so that the electrons can rearrange and form new bonds (and new chemical species).

We can see the importance of the two physical factors noted in postulates 2 and 3, the orientation and energy of collisions, when we consider the reaction of carbon monoxide with oxygen:

\(2 \text{CO}\left(g\right)+{\text{O}}_{\text{2}}\left(g\right) ⟶ 2 {\text{CO}}_{\text{2}}\left(g\right)\)

Carbon monoxide is a pollutant produced by the combustion of hydrocarbon fuels. To reduce this pollutant, automobiles have catalytic converters that use a catalyst to carry out this reaction. It is also a side reaction of the combustion of gunpowder that results in muzzle flash for many firearms. If carbon monoxide and oxygen are present in sufficient quantity, the reaction is spontaneous at high temperature and pressure.

The first step in the gas-phase reaction between carbon monoxide and oxygen is a collision between the two molecules:

\(\text{CO}\left(g\right)+{\text{O}}_{\text{2}}\left(g\right) ⟶ {\text{CO}}_{\text{2}}\left(g\right)+\text{O}\left(g\right)\)

Although there are many different possible orientations the two molecules can have relative to each other, consider the two presented in the figure below. In the first case, the oxygen side of the carbon monoxide molecule collides with the oxygen molecule. In the second case, the carbon side of the carbon monoxide molecule collides with the oxygen molecule. The second case is clearly more likely to result in the formation of carbon dioxide, which has a central carbon atom bonded to two oxygen atoms \(\left(\text{O}=\text{C}=\text{O}\right).\) This is a rather simple example of how important the orientation of the collision is in terms of creating the desired product of the reaction.

A diagram is shown that illustrates two possible collisions between C O and O subscript 2. In the diagram, oxygen atoms are represented as red spheres and carbon atoms are represented as black spheres. The diagram is divided into upper and lower halves by a horizontal dashed line. At the top left, a C O molecule is shown striking an O subscript 2 molecule such that the O atom from the C O molecule is at the point of collision. Surrounding this collision are a mix of molecules of C O, and O subscript 2 of varying sizes. At the top middle region of the figure, two separated O atoms are shown as red spheres with the label, “Oxygen to oxygen,” beneath them. To the upper right, “No reaction” is written. Similarly in the lower left of the diagram, a C O molecule is shown striking an O subscript 2 molecule such that the C atom from the C O molecule is at the point of collision. Surrounding this collision are a mix of molecules of C O, and O subscript 2 of varying sizes. At the lower middle region of the figure, a black sphere and a red spheres are shown with the label, “Carbon to oxygen,” beneath them. To the lower right, “More C O subscript 2 formation” is written and three models of C O subscript 2 composed each of a single central black sphere and two red spheres in a linear arrangement are shown.

Illustrated are two collisions that might take place between carbon monoxide and oxygen molecules. The orientation of the colliding molecules partially determines whether a reaction between the two molecules will occur.

If the collision does take place with the correct orientation, there is still no guarantee that the reaction will proceed to form carbon dioxide. In addition to a proper orientation, the collision must also occur with sufficient energy to result in product formation.When reactant species collide with both proper orientation and adequate energy, they combine to form an unstable species called an activated complex or a transition state. As an example, the figure below depicts the structure of possible transitions states in the reaction between CO and O2 to form CO2.

This figure shows three rows of structures. In the first row, an O atom on the left is connected to a C atom on its right with a double bond indicated by a pair of short parallel line segments. To the right of the C atom are three dots in a horizontal row followed by an O atom double bonded to another O atom on its right. In the second row, an O atom is followed by three dots in a horizontal row, which are followed by a C atom and a second grouping of three dots. To the right is an O atom double bonded to another O atom. In the third row, an O atom on the left is connected to a C atom on its right with a double bond indicated by a pair of short parallel line segments. To the right of the C atom are three dots in a horizontal row followed by an O atom followed by another grouping of three dots to another O atom on its right.

Possible transition states (activated complexes) for carbon monoxide reacting with oxygen to form carbon dioxide.

Possible transition states (activated complexes) for carbon monoxide reacting with oxygen to form carbon dioxide are shown in the image above. Solid lines represent covalent bonds, while dotted lines represent unstable orbital overlaps that may, or may not, become covalent bonds as product is formed. In the first two examples in this figure, the O=O double bond is not impacted; therefore, carbon dioxide cannot form. The third proposed transition state will result in the formation of carbon dioxide if the third “extra” oxygen atom separates from the rest of the molecule.

In most circumstances, it is impossible to isolate or identify a transition state or activated complex. In the reaction between carbon monoxide and oxygen to form carbon dioxide, activated complexes have only been observed spectroscopically in systems that utilize a heterogeneous catalyst. The gas-phase reaction occurs too rapidly to isolate any such chemical compound.

Collision theory explains why most reaction rates increase as concentrations increase. With an increase in the concentration of any reacting substance, the chances for collisions between molecules are increased because there are more molecules per unit of volume. More collisions mean a faster reaction rate, assuming the energy of the collisions is adequate.

This lesson is part of:

Chemical Kinetics

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.