Summarizing Chemical Reaction Rates
Key Concepts and Summary
The rate of a reaction can be expressed either in terms of the decrease in the amount of a reactant or the increase in the amount of a product per unit time. Relations between different rate expressions for a given reaction are derived directly from the stoichiometric coefficients of the equation representing the reaction.
Key Equations
- \(\text{relative reaction rates for}\phantom{\rule{0.2em}{0ex}}a\text{A}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}b\text{B}=-\phantom{\rule{0.2em}{0ex}}\cfrac{1}{a}\phantom{\rule{0.2em}{0ex}}\cfrac{\text{Δ}\left[\text{A}\right]}{\text{Δ}t}\phantom{\rule{0.1em}{0ex}}=\phantom{\rule{0.1em}{0ex}}\cfrac{1}{b}\phantom{\rule{0.2em}{0ex}}\cfrac{\text{Δ}\left[\text{B}\right]}{\text{Δ}t}\)
Glossary
average rate
rate of a chemical reaction computed as the ratio of a measured change in amount or concentration of substance to the time interval over which the change occurred
initial rate
instantaneous rate of a chemical reaction at t = 0 s (immediately after the reaction has begun)
instantaneous rate
rate of a chemical reaction at any instant in time, determined by the slope of the line tangential to a graph of concentration as a function of time
rate of reaction
measure of the speed at which a chemical reaction takes place
rate expression
mathematical representation relating reaction rate to changes in amount, concentration, or pressure of reactant or product species per unit time
This lesson is part of:
Chemical Kinetics