Summarizing Collision Theory
Key Equations
- \(k=A{e}^{\text{−}{E}_{\text{a}}\text{/}RT}\)
- \(\text{ln}\phantom{\rule{0.2em}{0ex}}k=\left(\cfrac{\text{−}{E}_{\text{a}}}{R}\right)\phantom{\rule{0.2em}{0ex}}\left(\cfrac{1}{T}\right)+\text{ln}\phantom{\rule{0.2em}{0ex}}A\)
- \(\text{ln}\phantom{\rule{0.2em}{0ex}}\cfrac{{k}_{1}}{{k}_{2}}\phantom{\rule{0.1em}{0ex}}=\phantom{\rule{0.1em}{0ex}}\cfrac{{E}_{\text{a}}}{R}\phantom{\rule{0.2em}{0ex}}\left(\cfrac{1}{{T}_{2}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\cfrac{1}{{T}_{1}}\right)\)
Key Equations
- \(k=A{e}^{\text{−}{E}_{\text{a}}\text{/}RT}\)
- \(\text{ln}\phantom{\rule{0.2em}{0ex}}k=\left(\cfrac{\text{−}{E}_{\text{a}}}{R}\right)\phantom{\rule{0.2em}{0ex}}\left(\cfrac{1}{T}\right)+\text{ln}\phantom{\rule{0.2em}{0ex}}A\)
- \(\text{ln}\phantom{\rule{0.2em}{0ex}}\cfrac{{k}_{1}}{{k}_{2}}\phantom{\rule{0.1em}{0ex}}=\phantom{\rule{0.1em}{0ex}}\cfrac{{E}_{\text{a}}}{R}\phantom{\rule{0.2em}{0ex}}\left(\cfrac{1}{{T}_{2}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\cfrac{1}{{T}_{1}}\right)\)
Glossary
activated complex
(also, transition state) unstable combination of reactant species representing the highest energy state of a reaction system
activation energy (Ea)
energy necessary in order for a reaction to take place
Arrhenius equation
mathematical relationship between the rate constant and the activation energy of a reaction
collision theory
model that emphasizes the energy and orientation of molecular collisions to explain and predict reaction kinetics
frequency factor (A)
proportionality constant in the Arrhenius equation, related to the relative number of collisions having an orientation capable of leading to product formation
This lesson is part of:
Chemical Kinetics
View Full Tutorial