Nonmetal Oxygen Compounds
Nonmetal Oxygen Compounds
Most nonmetals react with oxygen to form nonmetal oxides. Depending on the available oxidation states for the element, a variety of oxides might form. Fluorine will combine with oxygen to form fluorides such as OF2, where the oxygen has a 2+-oxidation state.
Sulfur Oxygen Compounds
The two common oxides of sulfur are sulfur dioxide, SO2, and sulfur trioxide, SO3. The odor of burning sulfur comes from sulfur dioxide. Sulfur dioxide, shown in the figure below, occurs in volcanic gases and in the atmosphere near industrial plants that burn fuel containing sulfur compounds.
This image shows the molecular structure (left) and resonance forms (right) of sulfur dioxide.
Commercial production of sulfur dioxide is from either burning sulfur or roasting sulfide ores such as ZnS, FeS2, and Cu2S in air. (Roasting, which forms the metal oxide, is the first step in the separation of many metals from their ores.) A convenient method for preparing sulfur dioxide in the laboratory is by the action of a strong acid on either sulfite salts containing the \({\text{SO}}_{3}{}^{2-}\) ion or hydrogen sulfite salts containing \({\text{HSO}}_{3}{}^{\text{−}}.\)
Sulfurous acid, H2SO3, forms first, but quickly decomposes into sulfur dioxide and water. Sulfur dioxide also forms when many reducing agents react with hot, concentrated sulfuric acid. Sulfur trioxide forms slowly when heating sulfur dioxide and oxygen together, and the reaction is exothermic:
\(2{\text{SO}}_{2}(g)+{\text{O}}_{2}(g)\;⟶\;2{\text{SO}}_{3}(g)\phantom{\rule{5em}{0ex}}\text{Δ}H\text{°}=-197.8\;\text{kJ}\)
Sulfur dioxide is a gas at room temperature, and the SO2 molecule is bent. Sulfur trioxide melts at 17 °C and boils at 43 °C. In the vapor state, its molecules are single SO3 units (shown in the figure below), but in the solid state, SO3 exists in several polymeric forms.
This image shows the structure (top) of sulfur trioxide in the gas phase and its resonance forms (bottom).
The sulfur oxides react as Lewis acids with many oxides and hydroxides in Lewis acid-base reactions, with the formation of sulfites or hydrogen sulfites, and sulfates or hydrogen sulfates, respectively.
Halogen Oxygen Compounds
The halogens do not react directly with oxygen, but it is possible to prepare binary oxygen-halogen compounds by the reactions of the halogens with oxygen-containing compounds. Oxygen compounds with chlorine, bromine, and iodine are oxides because oxygen is the more electronegative element in these compounds. On the other hand, fluorine compounds with oxygen are fluorides because fluorine is the more electronegative element.
As a class, the oxides are extremely reactive and unstable, and their chemistry has little practical importance. Dichlorine oxide, formally called dichlorine monoxide, and chlorine dioxide, both shown in the figure below, are the only commercially important compounds. They are important as bleaching agents (for use with pulp and flour) and for water treatment.
This image shows the structures of the (a) Cl2O and (b) ClO2 molecules.
This lesson is part of:
Metals, Metalloids, and Nonmetals