Periodicity
Introduction
Purity is extremely important when preparing silicon wafers. Technicians in a cleanroom prepare silicon without impurities (left). The CEO of VLSI Research, Don Hutcheson, shows off a pure silicon wafer (center). A silicon wafer covered in Pentium chips is an enlarged version of the silicon wafers found in many electronics used today (right). (credit middle: modification of work by “Intel Free Press”/Flickr; credit right: modification of work by Naotake Murayama)
The development of the periodic table in the mid-1800s came from observations that there was a periodic relationship between the properties of the elements. Chemists, who have an understanding of the variations of these properties, have been able to use this knowledge to solve a wide variety of technical challenges. For example, silicon and other semiconductors form the backbone of modern electronics because of our ability to fine-tune the electrical properties of these materials. This tutorial explores important properties of representative metals, metalloids, and nonmetals in the periodic table.
Periodicity
We begin this topic by examining the behaviors of representative metals in relation to their positions in the periodic table. The primary focus of this topic will be the application of periodicity to the representative metals.
It is possible to divide elements into groups according to their electron configurations. The representative elements are elements where the s and p orbitals are filling. The transition elements are elements where the d orbitals (groups 3–11 on the periodic table) are filling, and the inner transition metals are the elements where the f orbitals are filling.
The d orbitals fill with the elements in group 11; therefore, the elements in group 12 qualify as representative elements because the last electron enters an s orbital. Metals among the representative elements are the representative metals. Metallic character results from an element’s ability to lose its outer valence electrons and results in high thermal and electrical conductivity, among other physical and chemical properties.
There are 20 nonradioactive representative metals in groups 1, 2, 3, 12, 13, 14, and 15 of the periodic table (the elements shaded in yellow in the figure below). The radioactive elements copernicium, flerovium, polonium, and livermorium are also metals but are beyond the scope of this tutorial.
In addition to the representative metals, some of the representative elements are metalloids. A metalloid is an element that has properties that are between those of metals and nonmetals; these elements are typically semiconductors.
The remaining representative elements are nonmetals. Unlike metals, which typically form cations and ionic compounds (containing ionic bonds), nonmetals tend to form anions or molecular compounds. In general, the combination of a metal and a nonmetal produces a salt. A salt is an ionic compound consisting of cations and anions.
The location of the representative metals is shown in the periodic table. Nonmetals are shown in green, metalloids in purple, and the transition metals and inner transition metals in blue.
Most of the representative metals do not occur naturally in an uncombined state because they readily react with water and oxygen in the air. However, it is possible to isolate elemental beryllium, magnesium, zinc, cadmium, mercury, aluminum, tin, and lead from their naturally occurring minerals and use them because they react very slowly with air.
Part of the reason why these elements react slowly is that these elements react with air to form a protective coating. The formation of this protective coating is passivation. The coating is a nonreactive film of oxide or some other compound. Elemental magnesium, aluminum, zinc, and tin are important in the fabrication of many familiar items, including wire, cookware, foil, and many household and personal objects. Although beryllium, cadmium, mercury, and lead are readily available, there are limitations in their use because of their toxicity.
This lesson is part of:
Metals, Metalloids, and Nonmetals