Summarizing Enthalpy
Key Concepts and Summary
If a chemical change is carried out at constant pressure and the only work done is caused by expansion or contraction, q for the change is called the enthalpy change with the symbol ΔH, or \(\text{Δ}{H}_{298}^{°}\) for reactions occurring under standard state conditions. The value of ΔH for a reaction in one direction is equal in magnitude, but opposite in sign, to ΔH for the reaction in the opposite direction, and ΔH is directly proportional to the quantity of reactants and products.
Examples of enthalpy changes include enthalpy of combustion, enthalpy of fusion, enthalpy of vaporization, and standard enthalpy of formation. The standard enthalpy of formation, \(\text{Δ}{H}_{\text{f}}^{°},\) is the enthalpy change accompanying the formation of 1 mole of a substance from the elements in their most stable states at 1 bar (standard state).
Many of the processes are carried out at 298.15 K. If the enthalpies of formation are available for the reactants and products of a reaction, the enthalpy change can be calculated using Hess’s law: If a process can be written as the sum of several stepwise processes, the enthalpy change of the total process equals the sum of the enthalpy changes of the various steps.
Key Equations
- \(\text{Δ}U=q+w\)
- \(\text{Δ}{H}_{\text{reaction}}^{°}=\sum n\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\text{Δ}{H}_{\text{f}}^{°}\text{(products)}-\sum n\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\text{Δ}{H}_{\text{f}}^{°}\left(\text{reactants}\right)\)
Glossary
chemical thermodynamics
area of science that deals with the relationships between heat, work, and all forms of energy associated with chemical and physical processes
enthalpy (H)
sum of a system’s internal energy and the mathematical product of its pressure and volume
enthalpy change (ΔH)
heat released or absorbed by a system under constant pressure during a chemical or physical process
expansion work (pressure-volume work)
work done as a system expands or contracts against external pressure
first law of thermodynamics
internal energy of a system changes due to heat flow in or out of the system or work done on or by the system
Hess’s law
if a process can be represented as the sum of several steps, the enthalpy change of the process equals the sum of the enthalpy changes of the steps
hydrocarbon
compound composed only of hydrogen and carbon; the major component of fossil fuels
internal energy (U)
total of all possible kinds of energy present in a substance or substances
standard enthalpy of combustion \(\text{(}\text{Δ}{H}_{\text{c}}^{°}\text{)}\)
heat released when one mole of a compound undergoes complete combustion under standard conditions
standard enthalpy of formation \(\text{(}\text{Δ}{H}_{\text{f}}^{°}\text{)}\)
enthalpy change of a chemical reaction in which 1 mole of a pure substance is formed from its elements in their most stable states under standard state conditions
standard state
set of physical conditions as accepted as common reference conditions for reporting thermodynamic properties; 1 bar of pressure, and solutions at 1 molar concentrations, usually at a temperature of 298.15 K
state function
property depending only on the state of a system, and not the path taken to reach that state
This lesson is part of:
Thermochemistry