Recognizing and Using the Appropriate Method to Factor a Polynomial Completely
Recognizing and Using the Appropriate Method to Factor a Polynomial Completely
You have now become acquainted with all the methods of factoring that you will need in this course. (In your next algebra course, more methods will be added to your repertoire.) The figure below summarizes all the factoring methods we have covered. Below, a strategy is outlined that you should use when factoring polynomials.
Factor polynomials.
- Is there a greatest common factor?
- Factor it out.
- Is the polynomial a binomial, trinomial, or are there more than three terms?
- If it is a binomial:
Is it a sum?
- Of squares? Sums of squares do not factor.
- Of cubes? Use the sum of cubes pattern.
- Of squares? Factor as the product of conjugates.
- Of cubes? Use the difference of cubes pattern.
- If it is a trinomial:
Is it of the form \({x}^{2}+bx+c\)? Undo FOIL.Is it of the form \(a{x}^{2}+bx+c\)?
- If \(a\) and \(c\) are squares, check if it fits the trinomial square pattern.
- Use the trial and error or “ac” method.
- If it has more than three terms:
Use the grouping method.
- If it is a binomial:
- Check.
- Is it factored completely?
- Do the factors multiply back to the original polynomial?
Remember, a polynomial is completely factored if, other than monomials, its factors are prime!
Example
Factor completely: \(4{x}^{5}+12{x}^{4}\).
Solution
\(\begin{array}{ccccccc}\text{Is there a GCF?}\hfill & & & \text{Yes,}\phantom{\rule{0.2em}{0ex}}4{x}^{4}.\hfill & & & \hfill 4{x}^{5}+12{x}^{4}\hfill \\ & & & \text{Factor out the GCF.}\hfill & & & \hfill 4{x}^{4}(x+3)\hfill \\ \text{In the parentheses, is it a binomial, a}\hfill & & & & & & \\ \text{trinomial, or are there more than three terms?}\hfill & & & \text{Binomial.}\hfill & & & \\ \phantom{\rule{1em}{0ex}}\text{Is it a sum?}\hfill & & & & & & \text{Yes.}\hfill \\ \phantom{\rule{1em}{0ex}}\text{Of squares? Of cubes?}\hfill & & & & & & \text{No.}\hfill \\ \text{Check.}\hfill & & & & & & \\ \\ \phantom{\rule{1em}{0ex}}\text{Is the expression factored completely?}\hfill & & & & & & \text{Yes.}\hfill \\ \phantom{\rule{1em}{0ex}}\text{Multiply.}\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}4{x}^{4}(x+3)\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}4{x}^{4}·x+4{x}^{4}·3\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}4{x}^{5}+12{x}^{4}\phantom{\rule{0.2em}{0ex}}✓\hfill & & & & & & \end{array}\)
Example
Factor completely: \(12{x}^{2}-11x+2\).
Solution
| Is there a GCF? | No. | |
| Is it a binomial, trinomial, or are there more than three terms? | Trinomial. | |
| Are a and c perfect squares? | No, a = 12, not a perfect square. | |
| Use trial and error or the “ac” method. We will use trial and error here. |
Check.
\(\phantom{\rule{2.5em}{0ex}}(3x-2)(4x-1)\)
\(\phantom{\rule{2.5em}{0ex}}12{x}^{2}-3x-8x+2\)
\(\phantom{\rule{2.5em}{0ex}}12{x}^{2}-11x+2\phantom{\rule{0.2em}{0ex}}✓\)
Example
Factor completely: \({g}^{3}+25g\).
Solution
\(\begin{array}{ccccccc}\text{Is there a GCF?}\hfill & & & \text{Yes,}\phantom{\rule{0.2em}{0ex}}g.\hfill & & & \hfill {g}^{3}+25g\hfill \\ \text{Factor out the GCF.}\hfill & & & & & & \hfill g({g}^{2}+25)\hfill \\ \text{In the parentheses, is it a binomial, trinomial,}\hfill & & & & & & \\ \text{or are there more than three terms?}\hfill & & & \text{Binomial.}\hfill & & & \\ \phantom{\rule{1em}{0ex}}\text{Is it a sum ? Of squares?}\hfill & & & \text{Yes.}\hfill & & & \text{Sums of squares are prime.}\hfill \\ \text{Check.}\hfill & & & & & & \\ \\ \phantom{\rule{1em}{0ex}}\text{Is the expression factored completely?}\hfill & & & \text{Yes.}\hfill & & & \\ \phantom{\rule{1em}{0ex}}\text{Multiply.}\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}g({g}^{2}+25)\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}{g}^{3}+25g\phantom{\rule{0.2em}{0ex}}✓\hfill & & & & & & \end{array}\)
Example
Factor completely: \(12{y}^{2}-75\).
Solution
\(\begin{array}{ccccccc}\text{Is there a GCF?}\hfill & & & \text{Yes, 3.}\hfill & & & \hfill 12{y}^{2}-75\hfill \\ \text{Factor out the GCF.}\hfill & & & & & & \hfill 3(4{y}^{2}-25)\hfill \\ \text{In the parentheses, is it a binomial, trinomial},\hfill & & & & & & \\ \text{or are there more than three terms?}\hfill & & & \text{Binomial.}\hfill & & \\ \text{Is it a sum?}\hfill & & & \text{No.}\hfill & & & \\ \text{Is it a difference? Of squares or cubes?}\hfill & & & \text{Yes, squares.}\hfill & & & \hfill 3({(2y)}^{2}-{(5)}^{2})\hfill \\ \text{Write as a product of conjugates.}\hfill & & & & & & \hfill 3(2y-5)(2y+5)\hfill \\ \text{Check.}\hfill & & & & & & \\ \\ \phantom{\rule{1em}{0ex}}\text{Is the expression factored completely?}\hfill & & & \text{Yes.}\hfill & & & \\ \phantom{\rule{1em}{0ex}}\text{Neither binomial is a difference of}\hfill & & & & & & \\ \phantom{\rule{1em}{0ex}}\text{squares.}\hfill & & & & & & \\ \phantom{\rule{1em}{0ex}}\text{Multiply.}\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}3(2y-5)(2y+5)\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}3(4{y}^{2}-25)\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}12{y}^{2}-75\phantom{\rule{0.2em}{0ex}}✓\hfill & & & & & & \end{array}\)
Example
Factor completely: \(4{a}^{2}-12ab+9{b}^{2}\).
Solution
| Is there a GCF? | No. | |
| Is it a binomial, trinomial, or are there more terms? | ||
| Trinomial with \(a\ne 1\). But the first term is a perfect square. | ||
| Is the last term a perfect square? | Yes. | |
| Does it fit the pattern, \({a}^{2}-2ab+{b}^{2}?\) | Yes. | |
| Write it as a square. | ||
| Check your answer. | ||
| Is the expression factored completely? | ||
| Yes. | ||
| The binomial is not a difference of squares. | ||
| Multiply. | ||
| \({(2a-3b)}^{2}\) | ||
| \({(2a)}^{2}-2\cdot 2a\cdot 3b+{(3b)}^{2}\) | ||
| \(4{a}^{2}-12ab+9{b}^{2}✓\) |
Example
Factor completely: \(6{y}^{2}-18y-60\).
Solution
\(\begin{array}{ccccccc}\text{Is there a GCF?}\hfill & & & \text{Yes, 6.}\hfill & & & \hfill 6{y}^{2}-18y-60\hfill \\ \text{Factor out the GCF.}\hfill & & & \text{Trinomial with leading coefficient 1.}\hfill & & & \hfill 6({y}^{2}-3y-10)\hfill \\ \begin{array}{c}\text{In the parentheses, is it a binomial, trinomial,}\hfill \\ \text{or are there more terms?}\hfill \end{array}\hfill & & & & & & \\ \text{“Undo” FOIL.}\hfill & & & \hfill 6(y\phantom{\rule{1em}{0ex}})(y\phantom{\rule{1em}{0ex}})\hfill & & & \hfill 6(y+2)(y-5)\hfill \\ \text{Check your answer.}\hfill & & & & & & \\ \text{Is the expression factored completely?}\hfill & & & & & & \hfill \text{Yes.}\hfill \\ \text{Neither binomial is a difference of squares.}\hfill & & & & & & \\ \text{Multiply.}\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}6(y+2)(y-5)\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}6({y}^{2}-5y+2y-10)\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}6({y}^{2}-3y-10)\hfill & & & & & & \\ \phantom{\rule{2.5em}{0ex}}6{y}^{2}-18y-60\phantom{\rule{0.2em}{0ex}}✓\hfill & & & \end{array}\)
Example
Factor completely: \(24{x}^{3}+81\).
Solution
| Is there a GCF? | Yes, 3. | \(24{x}^{3}+81\) |
| Factor it out. | \(3(8{x}^{3}+27)\) | |
| In the parentheses, is it a binomial, trinomial, or are there more than three terms? | Binomial. | |
| Is it a sum or difference? | Sum. | |
| Of squares or cubes? | Sum of cubes. | |
| Write it using the sum of cubes pattern. | ||
| Is the expression factored completely? | Yes. | \(3(2x+3)(4{x}^{2}-6x+9)\) |
| Check by multiplying. | We leave the check to you. |
Example
Factor completely: \(2{x}^{4}-32\).
Solution
\(\begin{array}{ccccccc}\text{Is there a GCF?}\hfill & & & \text{Yes, 2.}\hfill & & & \hfill 2{x}^{4}-32\hfill \\ \text{Factor it out.}\hfill & & & & & & \hfill 2({x}^{4}-16)\hfill \\ \text{In the parentheses, is it a binomial, trinomial,}\hfill & & & & & & \\ \text{or are there more than three terms?}\hfill & & & \text{Binomial.}\hfill & & & \\ \phantom{\rule{1em}{0ex}}\text{Is it a sum or difference?}\hfill & & & \text{Yes.}\hfill & & & \\ \phantom{\rule{1em}{0ex}}\text{Of squares or cubes?}\hfill & & & \text{Difference of squares.}\hfill & & & \hfill 2({({x}^{2})}^{2}-{(4)}^{2})\hfill \\ \text{Write it as a product of conjugates.}\hfill & & & & & & \hfill 2({x}^{2}-4)({x}^{2}+4)\hfill \\ \text{The first binomial is again a difference of squares.}\hfill & & & & & & \hfill 2({(x)}^{2}-{(2)}^{2})({x}^{2}+4)\hfill \\ \text{Write it as a product of conjugates.}\hfill & & & & & & \hfill 2(x-2)(x+2)({x}^{2}+4)\hfill \\ \text{Is the expression factored completely?}\hfill & & & \text{Yes.}\hfill & & & \\ \phantom{\rule{1em}{0ex}}\text{None of these binomials is a difference of squares.}\hfill & & & & & & \\ \text{Check your answer.}\hfill & & & & & & \\ \phantom{\rule{1em}{0ex}}\text{Multiply.}\hfill & & & & & & \\ \\ \phantom{\rule{3em}{0ex}}\begin{array}{c}2(x-2)(x+2)({x}^{2}+4)\hfill \\ 2({x}^{2}-4)({x}^{2}+4)\hfill \\ 2({x}^{4}-16)\hfill \\ 2{x}^{4}-32✓\hfill \end{array}\hfill & & & & & & \end{array}\)
Example
Factor completely: \(3{x}^{2}+6bx-3ax-6ab\).
Solution
\(\begin{array}{ccccccc}\text{Is there a GCF?}\hfill & & & \text{Yes, 3.}\hfill & & & \hfill 3{x}^{2}+6bx-3ax-6ab\hfill \\ \text{Factor out the GCF.}\hfill & & & & & & \hfill 3({x}^{2}+2bx-ax-2ab)\hfill \\ \text{In the parentheses, is it a binomial, trinomial,}\hfill & & & \text{More than 3}\hfill & & & \\ \text{or are there more terms?}\hfill & & & \text{terms.}\hfill & & & \\ \text{Use grouping.}\hfill & & & & & & \hfill 3[x(x+2b)-a(x+2b)]\hfill \\ & & & & & & \hfill 3(x+2b)(x-a)\hfill \\ \text{Check your answer.}\hfill & & & & & & \\ \phantom{\rule{1em}{0ex}}\text{Is the expression factored completely? Yes.}\hfill & & & & & & \\ \phantom{\rule{1em}{0ex}}\text{Multiply.}\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}3(x+2b)(x-a)\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}3({x}^{2}-ax+2bx-2ab)\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}3{x}^{2}-3ax+6bx-6ab\phantom{\rule{0.2em}{0ex}}✓\hfill & & & & & & \end{array}\)
Example
Factor completely: \(10{x}^{2}-34x-24\).
Solution
\(\begin{array}{ccccccc}\text{Is there a GCF?}\hfill & & & \text{Yes, 2.}\hfill & & & \hfill 10{x}^{2}-34x-24\hfill \\ \text{Factor out the GCF.}\hfill & & & & & & \hfill 2(5{x}^{2}-17x-12)\hfill \\ \text{In the parentheses, is it a binomial, trinomial,}\hfill & & & \hfill \text{Trinomial with}\hfill & & & \\ \text{or are there more than three terms?}\hfill & & & a\ne 1.\hfill & & & \\ \text{Use trial and error or the “ac” method.}\hfill & & & & & & \hfill 2\underset{}{(5{x}^{2}}-17x\underset{}{-12)}\hfill \\ & & & & & & \hfill 2(5x+3)(x-4)\hfill \\ \begin{array}{c}\text{Check your answer. Is the expression factored}\hfill \\ \text{completely? Yes.}\hfill \end{array}\hfill & & & & & & \\ \phantom{\rule{2em}{0ex}}\text{Multiply.}\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}2(5x+3)(x-4)\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}2(5{x}^{2}-20x+3x-12)\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}2(5{x}^{2}-17x-12)\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}10{x}^{2}-34x-24\phantom{\rule{0.2em}{0ex}}✓\hfill & & & & & & \end{array}\)
This lesson is part of:
Factoring and Factorisation I