Summarizing Factor Special Products
Key Concepts
- Factor perfect square trinomials
\(\begin{array}{ccccccc}\text{Step 1.}\phantom{\rule{0.2em}{0ex}}\text{Does the trinomial fit the pattern?}\hfill & & & \hfill {a}^{2}+2ab+{b}^{2}\hfill & & & \hfill {a}^{2}-2ab+{b}^{2}\hfill \\ \phantom{\rule{3em}{0ex}}\text{Is the first term a perfect square?}\hfill & & & \hfill {(a)}^{2}\hfill & & & \hfill {(a)}^{2}\hfill \\ \phantom{\rule{3em}{0ex}}\text{Write it as a square.}\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}\text{Is the last term a perfect square?}\hfill & & & \hfill {(a)}^{2}\phantom{\rule{4.5em}{0ex}}{(b)}^{2}\hfill & & & \hfill {(a)}^{2}\phantom{\rule{4.5em}{0ex}}{(b)}^{2}\hfill \\ \phantom{\rule{3em}{0ex}}\text{Write it as a square.}\hfill & & & & & & \\ \phantom{\rule{3em}{0ex}}\text{Check the middle term. Is it}\phantom{\rule{0.2em}{0ex}}2ab?\hfill & & & \hfill {(a)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{(b)}^{2}\hfill & & & \hfill {(a)}^{2}{}_{\text{↘}}\underset{2·a·b}{}{}_{\text{↙}}{(b)}^{2}\hfill \\ \text{Step 2.}\phantom{\rule{0.2em}{0ex}}\text{Write the square of the binomial.}\hfill & & & \hfill {(a+b)}^{2}\hfill & & & \hfill {(a-b)}^{2}\hfill \\ \text{Step 3.}\phantom{\rule{0.2em}{0ex}}\text{Check by multiplying.}\hfill & & & & & & \end{array}\)
- Factor differences of squares
\(\begin{array}{cccc}\text{Step 1.}\phantom{\rule{0.2em}{0ex}}\text{Does the binomial fit the pattern?}\hfill & & & \hfill {a}^{2}-{b}^{2}\hfill \\ \phantom{\rule{3em}{0ex}}\text{Is this a difference?}\hfill & & & \hfill \_\_\_\_-\_\_\_\_\hfill \\ \phantom{\rule{3em}{0ex}}\text{Are the first and last terms perfect squares?}\hfill & & & \\ \text{Step 2.}\phantom{\rule{0.2em}{0ex}}\text{Write them as squares.}\hfill & & & \hfill {(a)}^{2}-{(b)}^{2}\hfill \\ \text{Step 3.}\phantom{\rule{0.2em}{0ex}}\text{Write the product of conjugates.}\hfill & & & \hfill (a-b)(a+b)\hfill \\ \text{Step 4.}\phantom{\rule{0.2em}{0ex}}\text{Check by multiplying.}\hfill & & & \end{array}\)
- Factor sum and difference of cubes To factor the sum or difference of cubes:
- Does the binomial fit the sum or difference of cubes pattern? Is it a sum or difference? Are the first and last terms perfect cubes?
- Write them as cubes.
- Use either the sum or difference of cubes pattern.
- Simplify inside the parentheses
- Check by multiplying the factors.
Glossary
perfect square trinomials pattern
If a and b are real numbers,
\(\begin{array}{cccc}\hfill {a}^{2}+2ab+{b}^{2}={(a+b)}^{2}\hfill & & & \hfill {a}^{2}-2ab+{b}^{2}={(a-b)}^{2}\hfill \end{array}\)
difference of squares pattern
If a and b are real numbers,
sum and difference of cubes pattern
\(\begin{array}{c}\hfill {a}^{3}+{b}^{3}=(a+b)({a}^{2}-ab+{b}^{2})\hfill \\ \hfill {a}^{3}-{b}^{3}=(a-b)({a}^{2}+ab+{b}^{2})\hfill \end{array}\)
This lesson is part of:
Factoring and Factorisation I
View Full Tutorial