Evaluating Variable Expressions with Integers

Evaluating Variable Expressions with Integers

Now we’ll practice evaluating expressions that involve subtracting negative numbers as well as positive numbers.

Example

Evaluate \(x-4\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}\)

  1. \(\phantom{\rule{0.2em}{0ex}}x=3\phantom{\rule{0.2em}{0ex}}\)
  2. \(\phantom{\rule{0.2em}{0ex}}x=-6.\)

Solution

To evaluate \(x-4\) when \(x=3\), substitute \(3\) for \(x\) in the expression.

.
. .
Subtract. .

To evaluate \(x-4\) when \(x=-6,\) substitute \(-6\) for \(x\) in the expression.

.
. .
Subtract. .

Example

Evaluate \(20-z\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}\)

  1. \(\phantom{\rule{0.2em}{0ex}}z=12\phantom{\rule{0.2em}{0ex}}\)
  2. \(\phantom{\rule{0.2em}{0ex}}z=-12\)

Solution

To evaluate \(20-z\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}z=12,\) substitute \(12\) for \(z\) in the expression.

.
. .
Subtract. .

To evaluate \(20-z\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}z=-12,\phantom{\rule{0.2em}{0ex}}\text{substitute}\phantom{\rule{0.2em}{0ex}}-12\phantom{\rule{0.2em}{0ex}}\text{for}\phantom{\rule{0.2em}{0ex}}z\phantom{\rule{0.2em}{0ex}}\text{in the expression.}\)

.
. .
Subtract. .

Optional Video: Subtracting Integers

This lesson is part of:

Introducing Integers

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.