Adding and Subtracting Polynomials
Adding and Subtracting Polynomials
We can think of adding and subtracting polynomials as just adding and subtracting a series of monomials. Look for the like terms—those with the same variables and the same exponent. The Commutative Property allows us to rearrange the terms to put like terms together.
Example
Find the sum: \(\left(5{y}^{2}-3y+15\right)+\left(3{y}^{2}-4y-11\right).\)
Solution
| Identify like terms. | |
| Rearrange to get the like terms together. | |
| Combine like terms. |
Example
Find the difference: \(\left(9{w}^{2}-7w+5\right)-\left(2{w}^{2}-4\right).\)
Solution
| Distribute and identify like terms. | |
| Rearrange the terms. | |
| Combine like terms. |
Example
Subtract: \(\left({c}^{2}-4c+7\right)\) from \(\left(7{c}^{2}-5c+3\right)\).
Solution
| Distribute and identify like terms. | |
| Rearrange the terms. | |
| Combine like terms. |
Example
Find the sum: \(\left({u}^{2}-6uv+5{v}^{2}\right)+\left(3{u}^{2}+2uv\right)\).
Solution
\(\begin{array}{cccc}& & & \phantom{\rule{4em}{0ex}}\left({u}^{2}-6uv+5{v}^{2}\right)+\left(3{u}^{2}+2uv\right)\hfill \\ \text{Distribute.}\hfill & & & \phantom{\rule{4em}{0ex}}{u}^{2}-6uv+5{v}^{2}+3{u}^{2}+2uv\hfill \\ \text{Rearrange the terms, to put like terms together.}\hfill & & & \phantom{\rule{4em}{0ex}}{u}^{2}+3{u}^{2}-6uv+2uv+5{v}^{2}\hfill \\ \text{Combine like terms.}\hfill & & & \phantom{\rule{4em}{0ex}}4{u}^{2}-4uv+5{v}^{2}\hfill \end{array}\)
Example
Find the difference: \(\left({p}^{2}+{q}^{2}\right)-\left({p}^{2}+10pq-2{q}^{2}\right)\).
Solution
\(\begin{array}{cccc}& & & \phantom{\rule{4em}{0ex}}\left({p}^{2}+{q}^{2}\right)-\left({p}^{2}+10pq-2{q}^{2}\right)\hfill \\ \text{Distribute.}\hfill & & & \phantom{\rule{4em}{0ex}}{p}^{2}+{q}^{2}-{p}^{2}-10pq+2{q}^{2}\hfill \\ \text{Rearrange the terms, to put like terms together.}\hfill & & & \phantom{\rule{4em}{0ex}}{p}^{2}-{p}^{2}-10pq+{q}^{2}+2{q}^{2}\hfill \\ \text{Combine like terms.}\hfill & & & \phantom{\rule{4em}{0ex}}-10p{q}^{2}+3{q}^{2}\hfill \end{array}\)
Example
Simplify: \(\left({a}^{3}-{a}^{2}b\right)-\left(a{b}^{2}+{b}^{3}\right)+\left({a}^{2}b+a{b}^{2}\right)\).
Solution
\(\begin{array}{cccc}& & & \phantom{\rule{4em}{0ex}}\left({a}^{3}-{a}^{2}b\right)-\left(a{b}^{2}+{b}^{3}\right)+\left({a}^{2}b+a{b}^{2}\right)\hfill \\ \text{Distribute.}\hfill & & & \phantom{\rule{4em}{0ex}}{a}^{3}-{a}^{2}b-a{b}^{2}-{b}^{3}+{a}^{2}b+a{b}^{2}\hfill \\ \text{Rearrange the terms, to put like terms together.}\hfill & & & \phantom{\rule{4em}{0ex}}{a}^{3}-{a}^{2}b+{a}^{2}b-a{b}^{2}+a{b}^{2}-{b}^{3}\hfill \\ \text{Combine like terms.}\hfill & & & \phantom{\rule{4em}{0ex}}{a}^{3}-{b}^{3}\hfill \end{array}\)
This lesson is part of:
Polynomials II