Dividing Monomials Summary

Key Concepts

  • Quotient Property for Exponents:
    • If \(a\) is a real number, \(a\ne 0\), and \(m,n\) are whole numbers, then:
      \(\frac{{a}^{m}}{{a}^{n}}={a}^{m-n},m>n\phantom{\rule{0.5em}{0ex}}\text{and}\phantom{\rule{0.5em}{0ex}}\frac{{a}^{m}}{{a}^{n}}=\frac{1}{{a}^{m-n}},n>m\)
  • Zero Exponent
    • If \(a\) is a non-zero number, then \({a}^{0}=1\).
  • Quotient to a Power Property for Exponents:
    • If \(a\) and \(b\) are real numbers, \(b\ne 0,\) and \(m\) is a counting number, then:
      \({\left(\frac{a}{b}\right)}^{m}=\frac{{a}^{m}}{{b}^{m}}\)
    • To raise a fraction to a power, raise the numerator and denominator to that power.
  • Summary of Exponent Properties
    • If \(a,b\) are real numbers and \(m,n\) are whole numbers, then
      \(\begin{array}{ccccc}\mathbf{\text{Product Property}}\hfill & & \hfill {a}^{m}·{a}^{n}& =\hfill & {a}^{m+n}\hfill \\ \mathbf{\text{Power Property}}\hfill & & \hfill {\left({a}^{m}\right)}^{n}& =\hfill & {a}^{m·n}\hfill \\ \mathbf{\text{Product to a Power}}\hfill & & \hfill {\left(ab\right)}^{m}& =\hfill & {a}^{m}{b}^{m}\hfill \\ \mathbf{\text{Quotient Property}}\hfill & & \hfill \frac{{a}^{m}}{{b}^{m}}& =\hfill & {a}^{m-n},a\ne 0,m>n\hfill \\ & & \hfill \frac{{a}^{m}}{{a}^{n}}& =\hfill & \frac{1}{{a}^{n-m}},a\ne 0,n>m\hfill \\ \mathbf{\text{Zero Exponent Definition}}\hfill & & \hfill {a}^{o}& =\hfill & 1,a\ne 0\hfill \\ \mathbf{\text{Quotient to a Power Property}}\hfill & & \hfill {\left(\frac{a}{b}\right)}^{m}& =\hfill & \frac{{a}^{m}}{{b}^{m}},b\ne 0\hfill \end{array}\)

This lesson is part of:

Polynomials II

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.