Multiplying Monomials

Multiplying Monomials

Since a monomial is an algebraic expression, we can use the properties of exponents to multiply monomials.

Example

Multiply: \(\left(3{x}^{2}\right)\left(-4{x}^{3}\right).\)

Solution

\(\begin{array}{cccc}& & & \hfill \left(3{x}^{2}\right)\left(-4{x}^{3}\right)\hfill \\ \text{Use the Commutative Property to rearrange the terms.}\hfill & & & \hfill 3·\left(-4\right)·{x}^{2}·{x}^{3}\hfill \\ \text{Multiply.}\hfill & & & \hfill -12{x}^{5}\hfill \end{array}\)

Example

Multiply: \(\left(\frac{5}{6}{x}^{3}y\right)\left(12x{y}^{2}\right).\)

Solution

\(\begin{array}{cccc}& & & \hfill \left(\frac{5}{6}{x}^{3}y\right)\left(12x{y}^{2}\right)\hfill \\ \text{Use the Commutative Property to rearrange the terms.}\hfill & & & \hfill \frac{5}{6}·12·{x}^{3}·x·y·{y}^{2}\hfill \\ \text{Multiply.}\hfill & & & \hfill 10{x}^{4}{y}^{3}\hfill \end{array}\)

Optional Video:

You can watch the video below for additional instruction and practice with using multiplication properties of exponents:

This lesson is part of:

Polynomials II

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.