Simplifying Expressions With Exponents
Simplifying Expressions with Exponents
Remember that an exponent indicates repeated multiplication of the same quantity. For example, \({2}^{4}\) means to multiply 2 by itself 4 times, so \({2}^{4}\) means \(2·2·2·2\).
Let’s review the vocabulary for expressions with exponents.
Exponential Notation
This is read \(a\) to the \({m}^{th}\) power.
In the expression \({a}^{m}\), the exponent\(m\) tells us how many times we use the base\(a\) as a factor.
Before we begin working with variable expressions containing exponents, let’s simplify a few expressions involving only numbers.
Example
Simplify:
(a) \({4}^{3}\)
(b) \({7}^{1}\)
(b) \({\left(\frac{5}{6}\right)}^{2}\)
(c) \({\left(0.63\right)}^{2}.\)
Solution
(a) \(\begin{array}{cccc}& & & {4}^{3}\hfill \\ \text{Multiply three factors of 4.}\hfill & & & 4·4·4\hfill \\ \text{Simplify.}\hfill & & & 64\hfill \end{array}\)
(b) \(\begin{array}{cccc}& & & \phantom{\rule{1.1em}{0ex}}{7}^{1}\hfill \\ \text{Multiply one factor of 7.}\hfill & & & \phantom{\rule{1.1em}{0ex}}7\hfill \end{array}\)
(c) \(\begin{array}{cccc}& & & \phantom{\rule{2.2em}{0ex}}{\left(\frac{5}{6}\right)}^{2}\hfill \\ \text{Multiply two factors.}\hfill & & & \phantom{\rule{2.2em}{0ex}}\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\hfill \\ \text{Simplify.}\hfill & & & \phantom{\rule{2.2em}{0ex}}\frac{25}{36}\hfill \end{array}\)
(d) \(\begin{array}{cccc}& & & \phantom{\rule{2.2em}{0ex}}{\left(0.63\right)}^{2}\hfill \\ \text{Multiply two factors.}\hfill & & & \phantom{\rule{2.2em}{0ex}}\left(0.63\right)\left(0.63\right)\hfill \\ \text{Simplify.}\hfill & & & \phantom{\rule{2.2em}{0ex}}0.3969\hfill \end{array}\)
Example
Simplify:
- \({\left(-5\right)}^{4}\)
- \(\text{−}{5}^{4}.\)
Solution
-
\(\begin{array}{cccc}& & & \phantom{\rule{4em}{0ex}}{\left(-5\right)}^{4}\hfill \\ \text{Multiply four factors of}\phantom{\rule{0.2em}{0ex}}-5.\hfill & & & \phantom{\rule{4em}{0ex}}\left(-5\right)\left(-5\right)\left(-5\right)\left(-5\right)\hfill \\ \text{Simplify.}\hfill & & & \phantom{\rule{4em}{0ex}}625\hfill \end{array}\)
-
\(\begin{array}{cccc}& & & \phantom{\rule{4em}{0ex}}\text{−}{5}^{4}\hfill \\ \text{Multiply four factors of 5.}\hfill & & & \phantom{\rule{4em}{0ex}}\text{−}\left(5·5·5·5\right)\hfill \\ \text{Simplify.}\hfill & & & \phantom{\rule{4em}{0ex}}-625\hfill \end{array}\)
Notice the similarities and differences in both parts of the example above! Why are the answers different? As we follow the order of operations in part the parentheses tell us to raise the \(\left(-5\right)\) to the 4th power. In part we raise just the 5 to the 4th power and then take the opposite.
This lesson is part of:
Polynomials II