General Formula For a Finite Geometric Series

General Formula For a Finite Geometric Series

\begin{align*} {S}_{n} &= a+ ar+ a{r}^{2}+\cdots + a{r}^{n-2} + a{r}^{n-1} \ldots (1) \\ r \times {S}_{n} &= \qquad ar+ a{r}^{2}+\cdots + a{r}^{n-2} + a{r}^{n-1} + ar^{n} \ldots \ldots (2) \\ \text{Subtract eqn. } (2) &\text{ from eqn. } (1) \\ \therefore {S}_{n} - r{S}_{n} &= a + 0 + 0 + \cdots - ar^{n} \\ {S}_{n} - r{S}_{n} &= a - ar^{n} \\ {S}_{n}(1 - r) &= a(1 - r^{n}) \\ \therefore {S}_{n} &= \cfrac{a(1 - r^{n})}{1 - r} \quad (\text{where } r \ne 1) \end{align*}

The general formula for determining the sum of a geometric series is given by:

\[{S}_{n} = \cfrac{a(1 - r^{n})}{1 - r} \qquad \text{where } r \ne 1\]

This formula is easier to use when \(r < 1\).

Alternative formula:

\begin{align*} {S}_{n} &= a+ ar+ a{r}^{2}+\cdots + a{r}^{n-2} + a{r}^{n-1} \ldots \ldots (1) \\ r \times {S}_{n} &= \qquad ar+ a{r}^{2}+\cdots + a{r}^{n-2} + a{r}^{n-1} + ar^{n} \ldots \ldots (2) \\ \text{Subtract eqn. } (1) &\text{ from eqn. } (2) \\ \therefore r{S}_{n} - {S}_{n} &= ar^{n} - a \\ {S}_{n}(r - 1) &= a(r^{n}-1) \\ \therefore {S}_{n} &= \cfrac{a(r^{n}-1)}{r - 1} \quad (\text{ where } r \ne 1) \end{align*}

The general formula for determining the sum of a geometric series is given by:

\[{S}_{n} = \cfrac{a(r^{n}-1)}{r - 1} \qquad \text{where } r \ne 1\]

This formula is easier to use when \(r > 1\).

Example

Question

Calculate: \[\sum _{k = 1}^{6}{32 ( \cfrac{1}{2} )^{k-1}}\]

Write down the first three terms of the series

\begin{align*} k=1; \quad T_{1}&= {32 ( \cfrac{1}{2} )^{0}} = 32 \\ k=2; \quad T_{2}&= {32 ( \cfrac{1}{2} )^{2-1}} = 16 \\ k=3; \quad T_{3}&= {32 ( \cfrac{1}{2} )^{3-1}} = 8 \end{align*}

We have generated the series \(32 + 16 + 8 + \cdots\)

Determine the values of \(a\) and \(r\)

\begin{align*} a &= T_{1} = 32 \\ r &= \cfrac{T_{2}}{T_{1}} = \cfrac{T_{3}}{T_{2}} = \cfrac{1}{2} \end{align*}

Use the general formula to find the sum of the series

\begin{align*} {S}_{n} &= \cfrac{a(1 - r^{n})}{1 - r}\\ {S}_{6} &= \cfrac{32(1 - ( \cfrac{1}{2} )^{6})}{1 - \cfrac{1}{2}} \\ &= \cfrac{32(1 - \cfrac{1}{64} )}{\cfrac{1}{2}} \\ &= 2 \times 32 ( \cfrac{63}{64} ) \\ &= 64 ( \cfrac{63}{64} ) \\ &= 63 \end{align*}

Write the final answer

\[\sum _{k = 1}^{6}{32 ( \cfrac{1}{2} )^{k-1}} = 63\]

Example

Question

Given a geometric series with \(T_{1} = -4\) and \(T_{4} = 32\). Determine the values of \(r\) and \(n\) if \(S_{n} = 84\).

Determine the values of \(a\) and \(r\)

\begin{align*} a &= T_{1} = -4 \\ T_{4} &= ar^{3} = 32 \\ \therefore -4 r^{3} &= 32 \\ r^{3} &= -8 \\ \therefore r &= -2 \end{align*}

Therefore the geometric series is \(-4 + 8 -16 + 32 \ldots\) Notice that the signs of the terms alternate because \(r < 0\).

We write the general term for this series as \(T_{n} = -4(-2)^{n-1}\).

Use the general formula for the sum of a geometric series to determine the value of \(n\)

\begin{align*} {S}_{n} &= \cfrac{a(1 - r^{n})}{1 - r}\\ \therefore 84 &= \cfrac{-4(1 - (-2)^{n})}{1 - (-2)} \\ 84 &= \cfrac{-4(1 - (-2)^{n})}{3} \\ - \cfrac{3}{4} \times 84 &= 1 - (-2)^{n} \\ - 63 &= 1 - (-2)^{n} \\ (-2)^{n} &= 64 \\ (-2)^{n} &= (-2)^{6} \\ \therefore n &= 6 \end{align*}

Write the final answer

\[r = -2 \text{ and } n = 6\]

Example

Question

Use the general formula for the sum of a geometric series to determine \(k\) if \[\sum _{n = 1}^{8}{k ( \cfrac{1}{2} )^{n}} = \cfrac{255}{64 }\]

Write down the first three terms of the series

\begin{align*} n=1; \quad T_{1}&= {k ( \cfrac{1}{2} )^{1}} = \cfrac{1}{2}k \\ n=2; \quad T_{2}&= {k ( \cfrac{1}{2} )^{2}} = \cfrac{1}{4}k \\ n=3; \quad T_{3}&= {k ( \cfrac{1}{2} )^{3}} = \cfrac{1}{8}k \end{align*}

We have generated the series \(\cfrac{1}{2}k + \cfrac{1}{4}k + \cfrac{1}{8}k + \cdots\)

We can take out the common factor \(k\) and write the series as: \(k ( \cfrac{1}{2} + \cfrac{1}{4} + \cfrac{1}{8} + \cdots )\)

\[\therefore k \sum _{n = 1}^{8}{( \cfrac{1}{2} )^{n}} = \cfrac{255}{64}\]

Determine the values of \(a\) and \(r\)

\begin{align*} a &= T_{1} = \cfrac{1}{2} \\ r &= \cfrac{T_{2}}{T_{1}} = \cfrac{T_{3}}{T_{2}} = \cfrac{1}{2} \end{align*}

Calculate the sum of the first eight terms of the geometric series

\begin{align*} \therefore {S}_{n} &= \cfrac{a(1 - r^{n})}{1 - r}\\ {S}_{8} &= \cfrac{\frac{1}{2}(1 - ( \cfrac{1}{2} )^{8})}{1 - \cfrac{1}{2}}\\ &= \cfrac{\frac{1}{2}(1 - ( \cfrac{1}{2} )^{8})}{\cfrac{1}{2}}\\ &= 1 - \cfrac{1}{256} \\ &= \cfrac{255}{256} \\ & \\ \therefore \sum _{n = 1}^{8}{( \cfrac{1}{2} )^{n}} &= \cfrac{255}{256} \end{align*}

So then we can write:

\begin{align*} k \sum _{n = 1}^{8}{( \cfrac{1}{2} )^{n}} &= \cfrac{255}{64} \\ k ( \cfrac{255}{256} ) &= \cfrac{255}{64} \\ \therefore k &= \cfrac{255}{64} \times \cfrac{256}{255} \\ &= \cfrac{256}{64} \\ &= 4 \end{align*}

Write the final answer

\[k = 4\]

This lesson is part of:

Sequences and Series

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.