Infinite Geometric Series

Infinite Geometric Series

There is a simple test for determining whether a geometric series converges or diverges; if \(-1 < r < 1\), then the infinite series will converge. If \(r\) lies outside this interval, then the infinite series will diverge.

Test for convergence:

  • If \(-1 < r < 1\), then the infinite geometric series converges.
  • If \(r < -1 \text{ or } r > 1\), then the infinite geometric series diverges.

We derive the formula for calculating the value to which a geometric series converges as follows:

\[{S}_{n}=\sum _{i=1}^{n}{a}{r}^{i-1}=\cfrac{{a} (1 - {r}^{n})}{1 - r}\]

Now consider the behaviour of \({r}^{n}\) for \(-1

Let \(r=\cfrac{1}{2}\):

\begin{align*} n=1& : {r}^{n}={r}^{1}={\left(\cfrac{1}{2}\right)}^{1}=\cfrac{1}{2} \\ n=2& : {r}^{n}={r}^{2}={\left(\cfrac{1}{2}\right)}^{2}=\cfrac{1}{2} \cdot \cfrac{1}{2}=\cfrac{1}{4}<\cfrac{1}{2} \\ n=3& : {r}^{n}={r}^{3}={\left(\cfrac{1}{2}\right)}^{3}=\cfrac{1}{2} \cdot \cfrac{1}{2} \cdot \cfrac{1}{2}=\cfrac{1}{8} <\cfrac{1}{4} \end{align*}

Since \(r\) is in the range \(-1

Therefore,

\begin{align*}{S}_{n}& = \cfrac{{a}(1 - {r}^{n} )}{1 - r} \\\text{If } -1 < r < 1, \quad & \text{then } r^{n} arrow 0 \text{ as } n arrow \infty \\\therefore {S}_{\infty }& = \cfrac{{a}(1 - 0 )}{1 - r} \\ & = \cfrac{{a}}{1-r} \end{align*}

The sum of an infinite geometric series is given by the formula

\[\therefore {S}_{\infty }=\sum _{i=1}^{\infty }{a}{r}^{i-1}=\cfrac{{a}}{1-r} \qquad (-1where

  • \({a}\) is the first term of the series;
  • \(r\) is the constant ratio.

Alternative notation:

\[\underbrace{{S}_{n}}_{n arrow \infty} arrow \cfrac{a}{1 - r} \quad \text{ if }-1

In words: as the number of terms \((n)\) tends to infinity, the sum of a converging geometric series \((S_{n})\) tends to the value \(\cfrac{a}{1 - r}\).

Example

Question

Given the series \(18 + 6 + 2 + \cdots\). Find the sum to infinity if it exists.

Determine the value of \(r\)

We need to know the value of \(r\) to determine whether the series converges or diverges.

\begin{align*} \cfrac{T_{2}}{T_{1}} &= \cfrac{6}{18} \\ &= \cfrac{1}{3} \\ \cfrac{T_{3}}{T_{2}} &= \cfrac{2}{6} \\ &= \cfrac{1}{3} \\ \therefore r &= \cfrac{1}{3} \end{align*}

Since \(- 1 < r < 1\), we can conclude that this is a convergent geometric series.

Determine the sum to infinity

Write down the formula for the sum to infinity and substitute the known values:

\[a = 18; \qquad r = \cfrac{1}{3}\]

\begin{align*} S_{\infty} &= \cfrac{a}{1 - r} \\ &= \cfrac{18}{ 1 - \cfrac{1}{3}} \\ &= \cfrac{18}{\cfrac{2}{3}} \\ &= 18 \times \cfrac{3}{2} \\ &= 27 \end{align*}

As \(n\) tends to infinity, the sum of this series tends to \(\text{27}\); no matter how many terms are added together, the value of the sum will never be greater than \(\text{27}\).

Example

Question

Use two different methods to convert the recurring decimal \(0,\dot{5}\) to a proper fraction.

Convert the recurring decimal to a fraction using equations

\begin{align*} \text{Let } x &= \text{0.}\dot{\text{5}}\\ \therefore x &= \text{0.555} \ldots \ldots (1) \\ 10x &= \text{5.55} \ldots \ldots (2) \\ (2) - (1): \quad 9x &= 5 \\ \therefore x &= \cfrac{5}{9} \end{align*}

Convert the recurring decimal to a fraction using the sum to infinity

\begin{align*} \text{0.}\dot{\text{5}} &= \text{0.5} + \text{0.05} + \text{0.005} + \ldots \\ \text{or } \quad \text{0.}\dot{\text{5}} &= \cfrac{5}{10} + \cfrac{5}{100} + \cfrac{5}{1000} + \ldots \end{align*}

This is a geometric series with \(r = \text{0.1} = \cfrac{1}{10}\). And since \(- 1 < r < 1\), we can conclude that the series is convergent.

\begin{align*} S_{\infty} &= \cfrac{a}{1 - r} \\ &= \cfrac{\frac{5}{10}}{1 - \cfrac{1}{10}} \\ &= \dfrac{\cfrac{5}{10}}{\cfrac{9}{10}} \\ &= \cfrac{5}{9} \end{align*}

Example

Question

Determine the possible values of \(a\) and \(r\) if

\[\sum _{n=1}^{\infty}{ar^{n-1}} = 5\]

Write down the sum to infinity formula and substitute known values

\begin{align*} S_{\infty} &= \cfrac{a}{1 - r} \\ \therefore 5 &= \cfrac{a}{1 - r} \\ a &= 5(1 - r) \\ \therefore a &= 5 - 5r \\ \text{And } 5r &= 5 - a \\ \therefore r &= \cfrac{5 - a}{5} \end{align*}

Apply the condition for convergence to determine possible values of \(a\)

For a series to converge: \(- 1 < r < 1\)

\begin{align*} -1 & < r < 1 \\ -1 & < \cfrac{5 - a}{5} < 1 \\ -5 & < 5 - a < 5 \\ -10 & < - a < 0 \\ 0 & < a < 10 \end{align*}

Write the final answer

For the series to converge, \(0 < a < 10\) and \(- 1 < r < 1\).

This lesson is part of:

Sequences and Series

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.