Infinite Geometric Series
Infinite Geometric Series
There is a simple test for determining whether a geometric series converges or diverges; if \(-1 < r < 1\), then the infinite series will converge. If \(r\) lies outside this interval, then the infinite series will diverge.
Test for convergence:
- If \(-1 < r < 1\), then the infinite geometric series converges.
- If \(r < -1 \text{ or } r > 1\), then the infinite geometric series diverges.
We derive the formula for calculating the value to which a geometric series converges as follows:
\[{S}_{n}=\sum _{i=1}^{n}{a}{r}^{i-1}=\cfrac{{a} (1 - {r}^{n})}{1 - r}\]
Now consider the behaviour of \({r}^{n}\) for \(-1 Let \(r=\cfrac{1}{2}\): \begin{align*} n=1& : {r}^{n}={r}^{1}={\left(\cfrac{1}{2}\right)}^{1}=\cfrac{1}{2} \\ n=2& : {r}^{n}={r}^{2}={\left(\cfrac{1}{2}\right)}^{2}=\cfrac{1}{2} \cdot \cfrac{1}{2}=\cfrac{1}{4}<\cfrac{1}{2} \\ n=3& : {r}^{n}={r}^{3}={\left(\cfrac{1}{2}\right)}^{3}=\cfrac{1}{2} \cdot \cfrac{1}{2} \cdot \cfrac{1}{2}=\cfrac{1}{8} <\cfrac{1}{4} \end{align*} Since \(r\) is in the range \(-1 Therefore, \begin{align*}{S}_{n}& = \cfrac{{a}(1 - {r}^{n} )}{1 - r} \\\text{If } -1 < r < 1, \quad & \text{then } r^{n} arrow 0 \text{ as } n arrow \infty \\\therefore {S}_{\infty }& = \cfrac{{a}(1 - 0 )}{1 - r} \\ & = \cfrac{{a}}{1-r} \end{align*} The sum of an infinite geometric series is given by the formula Alternative notation: \[\underbrace{{S}_{n}}_{n arrow \infty} arrow \cfrac{a}{1 - r} \quad \text{ if }-1 In words: as the number of terms \((n)\) tends to infinity, the sum of a converging geometric series \((S_{n})\) tends to the value \(\cfrac{a}{1 - r}\). Given the series \(18 + 6 + 2 + \cdots\). Find the sum to infinity if it exists. We need to know the value of \(r\) to determine whether the series converges or diverges. Since \(- 1 < r < 1\), we can conclude that this is a convergent geometric series. Write down the formula for the sum to infinity and substitute the known values: \[a = 18; \qquad r = \cfrac{1}{3}\] As \(n\) tends to infinity, the sum of this series tends to \(\text{27}\); no matter how many terms are added together, the value of the sum will never be greater than \(\text{27}\). Use two different methods to convert the recurring decimal \(0,\dot{5}\) to a proper fraction. This is a geometric series with \(r = \text{0.1} = \cfrac{1}{10}\). And since \(- 1 < r < 1\), we can conclude that the series is convergent. \begin{align*} S_{\infty} &= \cfrac{a}{1 - r} \\ &= \cfrac{\frac{5}{10}}{1 - \cfrac{1}{10}} \\ &= \dfrac{\cfrac{5}{10}}{\cfrac{9}{10}} \\ &= \cfrac{5}{9} \end{align*} Determine the possible values of \(a\) and \(r\) if For a series to converge: \(- 1 < r < 1\) For the series to converge, \(0 < a < 10\) and \(- 1 < r < 1\).
Example
Question
Determine the value of \(r\)
Determine the sum to infinity
Example
Question
Convert the recurring decimal to a fraction using equations
\begin{align*} \text{Let } x &= \text{0.}\dot{\text{5}}\\ \therefore x &= \text{0.555} \ldots \ldots (1) \\ 10x &= \text{5.55} \ldots \ldots (2) \\ (2) - (1): \quad 9x &= 5 \\ \therefore x &= \cfrac{5}{9} \end{align*}Convert the recurring decimal to a fraction using the sum to infinity
\begin{align*} \text{0.}\dot{\text{5}} &= \text{0.5} + \text{0.05} + \text{0.005} + \ldots \\ \text{or } \quad \text{0.}\dot{\text{5}} &= \cfrac{5}{10} + \cfrac{5}{100} + \cfrac{5}{1000} + \ldots \end{align*}
Example
Question
Write down the sum to infinity formula and substitute known values
\begin{align*} S_{\infty} &= \cfrac{a}{1 - r} \\ \therefore 5 &= \cfrac{a}{1 - r} \\ a &= 5(1 - r) \\ \therefore a &= 5 - 5r \\ \text{And } 5r &= 5 - a \\ \therefore r &= \cfrac{5 - a}{5} \end{align*}Apply the condition for convergence to determine possible values of \(a\)
Write the final answer
This lesson is part of:
Sequences and Series