Solving Applications of Systems of Equations By Graphing

Solving Applications of Systems of Equations By Graphing

We will use the same problem solving strategy we used in Math Models to set up and solve applications of systems of linear equations. We’ll modify the strategy slightly here to make it appropriate for systems of equations.

Use a problem solving strategy for systems of linear equations.

  1. Read the problem. Make sure all the words and ideas are understood.
  2. Identify what we are looking for.
  3. Name what we are looking for. Choose variables to represent those quantities.
  4. Translate into a system of equations.
  5. Solve the system of equations using good algebra techniques.
  6. Check the answer in the problem and make sure it makes sense.
  7. Answer the question with a complete sentence.

Step 5 is where we will use the method introduced in this section. We will graph the equations and find the solution.

Example

Sondra is making 10 quarts of punch from fruit juice and club soda. The number of quarts of fruit juice is 4 times the number of quarts of club soda. How many quarts of fruit juice and how many quarts of club soda does Sondra need?

Solution

Step 1. Read the problem.

Step 2. Identify what we are looking for.

We are looking for the number of quarts of fruit juice and the number of quarts of club soda that Sondra will need.

Step 3. Name what we are looking for. Choose variables to represent those quantities.

  Let \(f=\) number of quarts of fruit juice.

    \(c=\) number of quarts of club soda

Step 4. Translate into a system of equations.

This figure shows sentences converted into equations. The first sentence reads, “The number of quarts of fruit juice and the number of quarts of club soda is 10. “Number of quarts of fruit juice” contains a curly bracket beneath the phrase with an “f” centered under the bracket. The “And” also contains a curly bracket beneath it and has a plus sign centered beneath it. “Number of quarts of club soda” contains a curly bracket with the variable “c” beneath it. And finally, the phrase “is 10” contains a curly bracket. Under this it reads equals 10. The second sentence reads, “The number of quarts of fruit juice is four times the number of quarts of club soda”. This sentence is set up similarly in that each phrase contains a curly bracket underneath. The variable “f” represents “The number of quarts of fruit juice”. An equal sign represents “is” and “4c” represents four times the number of quarts of club soda.”

We now have the system. \(\begin{array}{c}f+c=10\hfill \\ f=4c\hfill \end{array}\)

Step 5. Solve the system of equations using good algebra techniques.

This figure shows two equations and their graph. The first equation is f = 4c where b = 4 and b = 0. The second equation is f + c = 10. f = negative c +10 where b = negative 1 and b = 10. The x y coordinate plane shows a graph of these two lines which intersect at (2, 8).

The point of intersection (2, 8) is the solution. This means Sondra needs 2 quarts of club soda and 8 quarts of fruit juice.

Step 6. Check the answer in the problem and make sure it makes sense.

Does this make sense in the problem?

Yes, the number of quarts of fruit juice, 8 is 4 times the number of quarts of club soda, 2.

Yes, 10 quarts of punch is 8 quarts of fruit juice plus 2 quarts of club soda.

Step 7. Answer the question with a complete sentence.

Sondra needs 8 quarts of fruit juice and 2 quarts of soda.

This lesson is part of:

Systems of Linear Equations I

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.