Electric Field Lines: Multiple Charges

Electric Field Lines: Multiple Charges

Drawings using lines to represent electric fields around charged objects are very useful in visualizing field strength and direction. Since the electric field has both magnitude and direction, it is a vector. Like all vectors, the electric field can be represented by an arrow that has length proportional to its magnitude and that points in the correct direction. (We have used arrows extensively to represent force vectors, for example.)

This figure shows two pictorial representations of the same electric field created by a positive point charge \(Q\). Figure (b) shows the standard representation using continuous lines. Figure (a) shows numerous individual arrows with each arrow representing the force on a test charge \(q\). Field lines are essentially a map of infinitesimal force vectors.

Note that the electric field is defined for a positive test charge \(q\), so that the field lines point away from a positive charge and toward a negative charge. (See this figure.) The electric field strength is exactly proportional to the number of field lines per unit area, since the magnitude of the electric field for a point charge is \(E=k|Q|/{r}^{2}\) and area is proportional to \({r}^{2}\). This pictorial representation, in which field lines represent the direction and their closeness (that is, their areal density or the number of lines crossing a unit area) represents strength, is used for all fields: electrostatic, gravitational, magnetic, and others.

In many situations, there are multiple charges. The total electric field created by multiple charges is the vector sum of the individual fields created by each charge. The following example shows how to add electric field vectors.

Example: Adding Electric Fields

Find the magnitude and direction of the total electric field due to the two point charges, \({q}_{1}\) and \({q}_{2}\), at the origin of the coordinate system as shown in this figure.

This figure shows how the electric field from two point charges can be drawn by finding the total field at representative points and drawing electric field lines consistent with those points. While the electric fields from multiple charges are more complex than those of single charges, some simple features are easily noticed.

For example, the field is weaker between like charges, as shown by the lines being farther apart in that region. (This is because the fields from each charge exert opposing forces on any charge placed between them.) (See this figure and figure (a).) Furthermore, at a great distance from two like charges, the field becomes identical to the field from a single, larger charge.

Figure (b) shows the electric field of two unlike charges. The field is stronger between the charges. In that region, the fields from each charge are in the same direction, and so their strengths add. The field of two unlike charges is weak at large distances, because the fields of the individual charges are in opposite directions and so their strengths subtract. At very large distances, the field of two unlike charges looks like that of a smaller single charge.

We use electric field lines to visualize and analyze electric fields (the lines are a pictorial tool, not a physical entity in themselves). The properties of electric field lines for any charge distribution can be summarized as follows:

  1. Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of isolated charges.
  2. The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the charge.
  3. The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines.
  4. The direction of the electric field is tangent to the field line at any point in space.
  5. Field lines can never cross.

The last property means that the field is unique at any point. The field line represents the direction of the field; so if they crossed, the field would have two directions at that location (an impossibility if the field is unique).

PhET Explorations: Charges and Fields

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.

This lesson is part of:

Electric Charge and Electric Field

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.