Summarizing Static Electricity and Charge: Conservation of Charge
Summary
- There are only two types of charge, which we call positive and negative.
- Like charges repel, unlike charges attract, and the force between charges decreases with the square of the distance.
- The vast majority of positive charge in nature is carried by protons, while the vast majority of negative charge is carried by electrons.
- The electric charge of one electron is equal in magnitude and opposite in sign to the charge of one proton.
- An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.
- The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal magnitude; the magnitude of this basic charge \(\mid {q}_{e}\mid \) is
\(\mid {q}_{e}\mid =1.60×{\text{10}}^{-\text{19}}\phantom{\rule{0.25em}{0ex}}\text{C}.\)
- Whenever charge is created or destroyed, equal amounts of positive and negative are involved.
- Most often, existing charges are separated from neutral objects to obtain some net charge.
- Both positive and negative charges exist in neutral objects and can be separated by rubbing one object with another. For macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion of electrons.
- The law of conservation of charge ensures that whenever a charge is created, an equal charge of the opposite sign is created at the same time.
Glossary
electric charge
a physical property of an object that causes it to be attracted toward or repelled from another charged object; each charged object generates and is influenced by a force called an electromagnetic force
law of conservation of charge
states that whenever a charge is created, an equal amount of charge with the opposite sign is created simultaneously
electron
a particle orbiting the nucleus of an atom and carrying the smallest unit of negative charge
proton
a particle in the nucleus of an atom and carrying a positive charge equal in magnitude and opposite in sign to the amount of negative charge carried by an electron
This lesson is part of:
Electric Charge and Electric Field
View Full Tutorial