Example on a Car Chase

Example: Car Chase

Question

A patrol car is moving on a straight horizontal road at a velocity of \(\text{10}\) \(\text{m·s$^{-1}$}\) east. At the same time a thief in a car ahead of him is driving at a velocity of \(\text{40}\) \(\text{m·s$^{-1}$}\) in the same direction.

5cd3aaad759023e96e61fe7e98f52319.png

\(v_{PG}\): velocity of the patrol car relative to the ground \(v_{TG}\): velocity of the thief's car relative to the ground

Questions 1 and 2 from the original version in 2011 Paper 1 are no longer part of the curriculum.

  1. While travelling at \(\text{40}\) \(\text{m·s$^{-1}$}\), the thief's car of mass \(\text{1 000}\) \(\text{kg}\), collides head-on with a truck of mass \(\text{5 000}\) \(\text{kg}\) moving at \(\text{20}\) \(\text{m·s$^{-1}$}\). After the collision, the car and the truck move together. Ignore the effects of friction.

    5c4d3a7c8f04461c8c9689d6c21c39c2.png

    State the law of conservation of linear momentum in words.

    (2 marks)

  2. Calculate the velocity of the thief's car immediately after the collision.

    (6 marks)

  3. Research has shown that forces greater than 85 000 N during collisions may cause fatal injuries. The collision described above lasts for \(\text{0.5}\) \(\text{s}\).

    Determine, by means of a calculation, whether the collision above could result in a fatal injury.

    (5 marks)

[TOTAL: 13 marks]

Question 1

The total (linear) momentum remains constant (OR is conserved OR does not change) in an isolated (OR in a closed system OR in the absence of external forces).

(2 marks)

Question 2

Option 1:

Taking to the right as positive

\begin{align*} \sum p_{\text{before}} & = \sum p_{\text{after}} \\ (\text{1 000})(\text{40})+(\text{5 000})(-\text{20}) & = (\text{1 000}+\text{5 000})v_f \\ v_f & = -\text{10 m}\cdot\text{s}^{-1}\\ & = \text{10 m}\cdot\text{s}^{-1} \quad \text{left OR west} \end{align*}

Option 2:

Taking to the right as positive

\begin{align*} \Delta p_{\text{car}}& = - \Delta p_{\text{truck}} \\ m_{\text{car}}(v_f -v_{i,\text{car}}) & = - m_{\text{truck}}(v_f -v_{i,\text{truck}}) \\ (\text{1 000})(v_f-(\text{40})) & = -(\text{5 000})(v_f -(-\text{20})) \\ \text{6 000}v_f & = -\text{60 000} \\ \therefore v_f & = -\text{10 m}\cdot\text{s}^{-1} \\ \therefore v_f & = \text{10 m}\cdot\text{s}^{-1} \quad \text{left OR west} \end{align*}

(6 marks)

Question 3

Option 1:

Force on the car: (Taking to the right as positive)

\begin{align*} F_{\text{net}} \Delta t & = \Delta p = mv_f - mv_i \\ F_{\text{net}} (\text{0.5}) & = (\text{1 000})(-\text{10}-\text{40}) \\ \therefore F_{\text{net}} & = -10^5\text{ N} \\ & \text{OR} \\ \therefore F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

OR

Force on the car: (Taking to the left as positive)

\begin{align*} F_{\text{net}} \Delta t & = \Delta p = mv_f - mv_i \\ F_{\text{net}} (\text{0.5}) & = (\text{1 000})(\text{10}-(-40)) \\ \therefore F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

Option 2:

Force on the truck: (Taking to the right as positive)

\begin{align*} F_{\text{net}} \Delta t & = \Delta p = mv_f - mv_i \\ F_{\text{net}} (\text{0.5}) & = (\text{5 000})(-10-(-20)) \\ \therefore F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

OR

Force on the truck: (Taking to the left as positive)

\begin{align*} F_{\text{net}} \Delta t & = \Delta p = mv_f - mv_i \\ F_{\text{net}} (\text{0.5}) & = (\text{1 000})(\text{10}-\text{20}) \\ \therefore F_{\text{net}} & = -10^5\text{ N} \\ & \text{OR} \\ \therefore F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

Option 3:

Force on the car: (Taking to the right as positive)

\begin{align*} v_f & = v_i + a \Delta t \\ -10 & = \text{40} + a (\text{0.5})\\ \therefore a & = -\text{100 m}\cdot\text{s}^{-2}\\ F_{\text{net}} & = ma \\ & = (\text{1 000})(-100) \\ F_{\text{net}} & = -10^5\text{ N} \quad (-\text{100 000 N})\\ F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

OR

Force on the car: (Taking to the left as positive)

\begin{align*} v_f & = v_i + a \Delta t \\ \text{10} & = -40 + a (\text{0.5})\\ \therefore a & = \text{100 m}\cdot\text{s}^{-2}\\ F_{\text{net}} & = ma \\ & = (\text{1 000})(\text{100}) \\ F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

Option 4:

Force on the truck: (Taking to the right as positive)

\begin{align*} v_f & = v_i + a \Delta t \\ -10 & = -20 + a (\text{0.5})\\ \therefore a & = \text{20 m}\cdot\text{s}^{-2}\\ F_{\text{net}} & = ma \\ & = (\text{5 000})(\text{20}) \\ F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

OR

Force on the truck: (Taking to the left as positive)

\begin{align*} v_f & = v_i + a \Delta t \\ \text{10} & = \text{20} + a (\text{0.5})\\ \therefore a & = -\text{20 m}\cdot\text{s}^{-2}\\ F_{\text{net}} & = ma \\ & = (\text{5 000})(-20) \\ F_{\text{net}} & = -10^5\text{ N} \quad (-\text{100 000 N})\\ F_{\text{net}} & = 10^5\text{ N} \quad (\text{100 000 N})\\ \therefore F_{\text{net}} & > \text{85 000 N} \end{align*}

Yes, the collision is fatal.

(5 marks)

[TOTAL: 13 marks]

This lesson is part of:

Momentum and Impulse

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.