Finding the Equations of Motion

The equations can be utilized for any motion that can be described as being either a constant velocity motion (an acceleration of 0 m/s/s) or a constant acceleration motion. The following are derivations of the equations of motion. The equations can be derived ...

Extension: Finding the Equations of Motion

The following are derivations of the equations of motion.

Derivation of Equation 1

According to the definition of acceleration:

\[\vec{a}=\frac{\Delta \vec{v}}{t}\]

where \(\Delta \vec{v}\) is the change in velocity, i.e. \(\Delta v={\vec{v}}_{f} - {\vec{v}}_{i}\). Thus we have

\begin{align*} \vec{a} & = \frac{{\vec{v}}_{f} - {\vec{v}}_{i}}{t} \\ {\vec{v}}_{f} & = {\vec{v}}_{i} + \vec{a}t \end{align*}

Derivation of Equation 2

We have seen that displacement can be calculated from the area under a velocity vs. time graph. For uniformly accelerated motion the most complicated velocity vs. time graph we can have is a straight line. Look at the graph below - it represents an object with a starting velocity of \({\vec{v}}_{i}\), accelerating to a final velocity \({\vec{v}}_{f}\) over a total time t.

35b0c9fa58a427ed07938b053b96a206.png

To calculate the final displacement we must calculate the area under the graph - this is just the area of the rectangle added to the area of the triangle. This portion of the graph has been shaded for clarity.

\begin{align*} {\text{Area}}_{△} & = \frac{1}{2} b\times h \\ & = \frac{1}{2} t \times \left({v}_{f} - {v}_{i}\right) \\ & = \frac{1}{2}{v}_{f}t - \frac{1}{2}{v}_{i}t \end{align*}\begin{align*} {\text{Area}}_{\square } & = l \times b \\ & = t\times {v}_{i} \\ & = {v}_{i}t \end{align*}\begin{align*} \text{Displacement } & = {\text{Area}}_{\square } + {\text{Area}}_{△} \\ \Delta \vec{x} & = {v}_{i}t + \frac{1}{2}{v}_{f}t - \frac{1}{2}{v}_{i}t \\ \Delta \vec{x} & = \frac{\left({v}_{i} + {v}_{f}\right)}{2}t \end{align*}

Derivation of Equation 3

This equation is simply derived by eliminating the final velocity \({v}_{f}\) in Equation 2. Remembering from Equation 1 that

\[{\vec{v}}_{f} = {\vec{v}}_{i} + \vec{a}t\]

then Equation 2 becomes

\begin{align*} \Delta \vec{x} & = \frac{{\vec{v}}_{i} + {\vec{v}}_{i} + \vec{a}t}{2}t \\ & = \frac{2{\vec{v}}_{i}t + \vec{a}{t}^{2}}{2} \\ \Delta \vec{x} & = {\vec{v}}_{i}t + \frac{1}{2}\vec{a}{t}^{2} \end{align*}

Derivation of Equation 4

This equation is just derived by eliminating the time variable in the above equation. From Equation 1 we know

\[t = \frac{{\vec{v}}_{f} - {\vec{v}}_{i}}{a}\]

Substituting this into Equation 3 gives

\begin{align*} \Delta \vec{x} & = {\vec{v}}_{i}\left(\frac{{\vec{v}}_{f} - {\vec{v}}_{i}}{a}\right) + \frac{1}{2}a{\left(\frac{{\vec{v}}_{f} - {\vec{v}}_{i}}{\vec{a}}\right)}^{2} \\ & = \frac{{\vec{v}}_{i}{\vec{v}}_{f}}{\vec{a}} - \frac{{\vec{v}}_{i}^{2}}{\vec{a}} + \frac{1}{2}\vec{a}\left(\frac{{\vec{v}}_{f}^{2} - 2{\vec{v}}_{i}{\vec{v}}_{f} + {\vec{v}}_{i}^{2}}{{\vec{a}}^{2}}\right) \\ & = \frac{{\vec{v}}_{i}{\vec{v}}_{f}}{\vec{a}} - \frac{{\vec{v}}_{i}^{2}}{\vec{a}} + \frac{{\vec{v}}_{f}^{2}}{2\vec{a}} - \frac{{\vec{v}}_{i}{\vec{v}}_{f}}{\vec{a}} + \frac{{\vec{v}}_{i}^{2}}{2\vec{a}} \\ 2\vec{a}\Delta \vec{x} & = -2{\vec{v}}_{i}^{2} + {\vec{v}}_{f}^{2} + {\vec{v}}_{i}^{2} \\ {\vec{v}}_{f}^{2} & = {\vec{v}}_{i}^{2} + 2\vec{a}\Delta \vec{x} \end{align*}

This gives us the final velocity in terms of the initial velocity, acceleration and displacement and is independent of the time variable.

This lesson is part of:

One-Dimensional Motion

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.