Summarizing Newton’s Universal Law of Gravitation
Summary
- Newton’s universal law of gravitation: Every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. In equation form, this is
\(F=G\cfrac{\text{mM}}{{r}^{2}}\text{,}\)
where F is the magnitude of the gravitational force. \(G\) is the gravitational constant, given by \(G=6\text{.}\text{674}×{\text{10}}^{\text{–11}}\phantom{\rule{0.25em}{0ex}}\text{N}\cdot {\text{m}}^{2}{\text{/kg}}^{2}\).
- Newton’s law of gravitation applies universally.
Glossary
gravitational constant, G
a proportionality factor used in the equation for Newton’s universal law of gravitation; it is a universal constant—that is, it is thought to be the same everywhere in the universe
center of mass
the point where the entire mass of an object can be thought to be concentrated
microgravity
an environment in which the apparent net acceleration of a body is small compared with that produced by Earth at its surface
Newton’s universal law of gravitation
every particle in the universe attracts every other particle with a force along a line joining them; the force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them
This lesson is part of:
Uniform Circular Motion and Gravitation