Efficiency

Efficiency

Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the energy input. The efficiency\(\text{Eff}\) of an energy conversion process is defined as

\(\text{Efficiency}\left(\text{Eff}\right)=\frac{\text{useful energy or work output}}{\text{total energy input}}=\frac{{W}_{\text{out}}}{{E}_{\text{in}}}\text{.}\)

The table below lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40% of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful) energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.

Efficiency of the Human Body and Mechanical Devices

Activity/device Efficiency (%)
Cycling and climbing 20
Swimming, surface 2
Swimming, submerged 4
Shoveling 3
Weightlifting 9
Steam engine 17
Gasoline engine 30
Diesel engine 35
Nuclear power plant 35
Coal power plant 42
Electric motor 98
Compact fluorescent light 20
Gas heater (residential) 90
Solar cell 10

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energies for each spring.

Masses and Springs

This lesson is part of:

Work, Energy and Energy Resources

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.