Conservation of Mechanical Energy

The Law of Conservation of Energy: Energy cannot be created or destroyed, but is merely changed from one form into another. So far we have looked at two types of energy: gravitational potential energy and kinetic energy. The sum of the gravitational potential energy and kinetic energy is called the mechanical energy. In a closed system, one where there are no external dissipative ...

Conservation of Mechanical Energy

Definition: Conservation of Energy

The Law of Conservation of Energy: Energy cannot be created or destroyed, but is merely changed from one form into another.

So far we have looked at two types of energy: gravitational potential energy and kinetic energy. The sum of the gravitational potential energy and kinetic energy is called the mechanical energy. In a closed system, one where there are no external dissipative forces acting, the mechanical energy will remain constant. In other words, it will not change (become more or less). This is called the Law of Conservation of Mechanical Energy.

Tip:

In problems involving the use of conservation of energy, the path taken by the object can be ignored. The only important quantities are the object's velocity (which gives its kinetic energy) and height above the reference point (which gives its gravitational potential energy).

Definition: Conservation of Mechanical Energy

Law of Conservation of Mechanical Energy: The total amount of mechanical energy, in a closed system in the absence of dissipative forces (e.g. friction, air resistance), remains constant.

This means that potential energy can become kinetic energy, or vice versa, but energy cannot “disappear”. For example, in the absence of air resistance, the mechanical energy of an object moving through the air in the Earth's gravitational field, remains constant (is conserved).

This lesson is part of:

Work, Energy and Power

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.