Key Concepts

Key Concepts

  • Sign Patterns of the Quadrants
    \(\begin{array}{cccccccccc}\text{Quadrant I}\hfill & & & \text{Quadrant II}\hfill & & & \text{Quadrant III}\hfill & & & \text{Quadrant IV}\hfill \\ \left(x,y\right)\hfill & & & \left(x,y\right)\hfill & & & \left(x,y\right)\hfill & & & \left(x,y\right)\hfill \\ \left(+,+\right)\hfill & & & \left(\text{−},+\right)\hfill & & & \left(\text{−},\text{−}\right)\hfill & & & \left(+,\text{−}\right)\hfill \end{array}\)
  • Points on the Axes
    • On the x-axis, \(y=0\). Points with a y-coordinate equal to 0 are on the x-axis, and have coordinates \(\left(a,0\right)\).
    • On the y-axis, \(x=0\). Points with an x-coordinate equal to 0 are on the y-axis, and have coordinates \(\left(0,b\right).\)
  • Solution of a Linear Equation
    • An ordered pair \(\left(x,y\right)\) is a solution of the linear equation \(Ax+By=C\), if the equation is a true statement when the x- and y- values of the ordered pair are substituted into the equation.

Glossary

linear equation

A linear equation is of the form $Ax+By=C$, where A and B are not both zero, is called a linear equation in two variables.

ordered pair

An ordered pair $(x,y)$ gives the coordinates of a point in a rectangular coordinate system.

origin

The point $(0,0)$ is called the origin. It is the point where the x-axis and y-axis intersect.

quadrant

The $x$-axis and the $y$-axis divide a plane into four regions, called quadrants.

rectangular coordinate system

A grid system is used in algebra to show a relationship between two variables; also called the $xy$-plane or the ‘coordinate plane’.

$x$-coordinate

The first number in an ordered pair $(x,y)$.

$y$-coordinate

The second number in an ordered pair $(x,y)$.

This lesson is part of:

Graphs and Equations

View Full Tutorial

Track Your Learning Progress

Sign in to unlock unlimited practice exams, tutorial practice quizzes, personalized weak area practice, AI study assistance with Lexi, and detailed performance analytics.